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Abstract 

Insight into the efficient filling of space in systems of binary spheres is explored using 

bipyramids consisting of 3 ≤ n ≤ 8 tetrahedra sharing a common pair of spheres. Compact 

packings are sought in bipyramids consisting of larger hard spheres of unit radius and smaller 

hard spheres of radius 0.001 ≤ R ≤ 1. Seventy-seven distinct compact bipyramids are found. The 

number of distinct compact bipyramids increases with the number n of constituent tetrahedra. No 

compact bipyramids are found for R ≥ 0.9473 and for 0.8493 ≥ R ≥ 0.7434. A topological 

instability eliminates compact packings for R ≤ 0.1547. Pentagonal bipyramids cover a larger 

range in R than any other compact bipyramids studied.  

 

 

1. Introduction 

Efficient packing represents the most ubiquitous of ordering principles. While familiarity may 

have rendered the result commonplace, it is remarkable that the condition of density 

maximisation alone is sufficient to generate the face centered and hexagonal close packed 

crystals for a collection of identical hard spheres. The nature of the relationship between density 
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maximization and the stability of aperiodic structures when the steric constraints become more 

complex is an open question which finds a sharp focus in considering the stability of metallic 

glasses with respect to crystallization. Here steric complexity is provided by the presence of 

spherical particles of different size. In this paper we propose that bipyramids represent useful 

local structural elements in amorphous packings of binary mixtures of hard spheres. We report 

on a survey of the sphere size ratios associated with all possible compact packings of 3-fold to 8-

fold bipyramids.   

 

Thinking about maximising the packing density of spheres of different size when periodic 

configurations are excluded, or at least not explicitly invoked, represents a major challenge from 

the outset. How is the problem to be posed? The most popular answer to this question has been 

to use model building – originally real models and now computer models – in which the 

optimization is carried out within the constraint of some modelling protocol. Pioneering this 

approach, Bernal [1] introduced the idea of ‘random close packing’ as being the maximum 

density of an amorphous collection of hard spheres of a single size. There have been a large 

number of studies of random close packing of hard spheres of one size [2,3] and two sizes [4,5]. 

Torquato et al [6] have criticised the reliance on the modelling protocol to implicitly define the 

amorphous constraint. These authors showed how their choice of modelling protocol imposed no 

such constraint and thus allowed a continuous path of sphere packings in terms of density from 

amorphous to fully crystalline.  

 

The analysis of structure in computer modelling of disordered systems is often based on local 

organization of particles. Most of the literature makes use of one of three choices of local 
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structural ‘element’: coordination polyhedra, common neighbours or tetrahedra. As these local 

measures form the basis of the geometrical approaches to amorphous packing described below, 

we shall briefly review the methods of structural analysis. Coordination polyhedra are defined 

using either Voronoi polyhedra [7] or their duals, the Delaunay tesselations [8]. The large variety 

of possible polyhedra tends to result in identifying a rather broad distribution of local structures 

in a liquid, many of which may only differ by one or two bonds. The common neighbour 

analysis was originally developed to resolve the geometrical origin of the first and second peaks 

in the pair distribution function of a liquid [9]. The idea is to consider all pairs of particles that 

share one or more neighbours. Honeycutt and Andersen [10] introduced a four integer notation to 

classify these common neighbours. The first integer is 1 or 2, depending on whether the root pair 

are in contact or not. The second integer indicates the number of neighbours common to the root 

pair. The third integer records the number of contacts among the common neighbours. A fourth 

integer is included that does not quantify some explicit topological feature but is used to 

distinguish between arrangements of the common neighbours that the first three numbers cannot 

differentiate. The close packed icosahedron consists of only a single unit, (1551), while the fcc 

crystal is made of the following common neighbour units: (2211), (2101), (1421) and (2441). 

(Note that in the case of the close packed crystal, the root pair are generally not in contact, as 

indicated by the first integer being two.)  

 

Looking at ever smaller and, hence, more elementary, structural motifs we end up with 

tetrahedra. In 3D, the smallest number of spheres which can be identified as having a compact 

packing is four and that packing is a tetrahedron, an irregular one when spheres of different size 

are involved. Regular tetrahedra cannot be packed without leaving gaps [11]. Allowing for 
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deviations away from regularity, however, Frank and Kasper [12] showed that it was possible to 

construct a range of polytetrahedral crystals. Bernal [1] estimated that the random close packed 

hard spheres were comprised of 86% tetrahedra, and a number of groups [11,13,14] have sought 

to link these facts by describing the structure of amorphous alloys in terms of disclination 

networks based on the Frank-Kasper analysis. Medvedev and coworkers [15] have analysed 

amorphous packings of spheres in terms of the network of tetrahedra connected through shared 

faces with other tetrahedra (and fragments of octahedra).   

 

The considerations of local structure in amorphous packings described in the preceding 

paragraph suggest that, instead of statistically modelling amorphous packings of thousands of 

particles, it might be useful to determine the optimal packing geometries of the small number of 

particles involved in local structure. In this approach one explicitly solves for the densest 

packing of various local arrangements of particles. Just as a crystal structure can be resolved into 

the structure of a unit cell and the rules by which the unit cells are packed, so might aperiodic 

structures be resolved into some finite family of locally preferred structures [16] and the rules by 

which they can be assembled with one another to occupy space. This approach neglects the role 

of the particles that lie outside the local group. 

 

Since the packing of spheres in a tetrahedron is straight forward, the choice of locally preferred 

structures have tended to fall into two groups. The first, with the most extensive literature, is the 

nearest neighbour coordination polyhedra. Frank adopted this approach in championing the role 

of icosahedral coordination [17].  Hoare and Pal [18] considered the close packing of spheres in 

clusters that extended well beyond the nearest neighbour coordination shell. Spheres of two sizes 
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have been included to only a limited extent in studies of efficiently-packed clusters consisting of 

equal-sized spheres surrounding a central sphere of different size [19].  

 

One problem with using polyhedra to resolve amorphous structures is that the loss or gain of a 

single edge (i.e. a contact between a pair of particles) changes the polyhedron without, 

necessarily, changing the structure that is being analysed in any significant way. As the 

polyhedra become larger, so do the number of such variants. To avoid this problem, we suggest 

looking at n-bipyramids, consisting of a pair of contacting spheres and their n common 

neighbours [10], as representing the smallest non-trivial packing element where frustration 

becomes important. The n-bipyramid consists of two axial sites and n equatorial sites, giving n 

tetrahedra that share the common axis and n dihedral angles common to the axial sites. An n-

bipyramid is compact when each equatorial sphere contacts its two equatorial neighbours and the 

common neighbour pair. In the notation of Honeycutt and Andersen [10], these are common 

neighbour pairs of the type (1nn1). The n dihedral angles sum to 2π radians in these efficiently 

packed bipyramids, analogous to the compact packing in binary systems of 2D discs, where the 

planar triangles formed by the discs surrounding a common disc sum to 2π radians [20]. If there 

are just three common neighbours, we have a trigonal bipyramid; four common neighbours, an 

octahedron; five common neighbours, a pentagonal bipyramid, and so on. A number of papers 

[1,21] note that the pentagonal bipyramid occurs frequently in random close packed hard 

spheres. For simplicity, we consider binary bipyramids with larger hard spheres L of unit radius 

and smaller hard spheres S of radius 0.001 ≤ R ≤ 1. Compact bipyramids are reported here, along 

with topological characteristics including the relative sphere sizes, relative concentration and 
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specific bipyramid configurations. We specifically address the packing within bipyramids, but do 

not address the packing between bipyramids.  

 

2. Approach 

Establishing close packing in a particular n-bipyramid, it is sufficient to show that the n dihedral 

angles about the axial pair of particles sum to 2π. The dihedral angles are explicit functions of 

the S and L sphere radii. Consider the tetrahedron OABC in Figure 1, where O, A, B and C are 

centres of S or L spheres and OA is the tetrahedron edge about which the dihedral angle, D, is 

measured. The dihedral angle can be expressed in terms of the three planar angles:  BOC (α), 

AOC (β) and AOB (γ) as follows, 

 ( )( )
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⎩
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⎧ −
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when in contact as follows,  

 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −+

=
OCOB

BCOCOB
2

cos
222

α  2a 

 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −+

=
OCOA

ACOCOA
2

cos
222

β  2b 

 

6



 7

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −+

=
OBOA

ABOBOA
2

cos
222

γ  2c 

 

where the edge length OA  is the sum of sphere radii that occupy O and A. There are three 

possible edge lengths (2R, 1+R and 2) and five planar angle cosines (½, R/(1+R), 1-2/(1+R)2, 

1/(1+R) and 1-[2R/(1+R)]2). Bipyramids are specified by the two spheres that define the common 

axis and by the sequence of n equatorial spheres. For each axis pair, the three possible 

combinations of two equatorial spheres give three possible dihedral angles, DSS, DSL and DLL. 

The packing in bipyramids of a given axis pair can thus be described by a linear combination of 

these angles  

 

 iDSS +jDSL +kDLL  3 

 

where i, j and k represent the number of dihedral angles with SS, SL and LL equatorial pairs, 

respectively. The distinct equatorial sequences are listed in Table I, along with the i, j, k values 

for each distinct sequence. There are three axis pairs for each equatorial sequence, and the 

resulting number of possible n-bipyramids is shown in Table II. Several unique equatorial 

sequences have identical i, j, k indices when n ≥ 6, and so give identical packing. The number of 

distinct i, j, k packings is also shown in Table II.  

 

We search for compact solutions in each possible n-bipyramid 3 ≤ n ≤ 8 over the smaller radius 

R such that 0.001 ≤ R ≤ 1. Compact bipyramids are specified by the axis pair, by the distinct 

sequence of equatorial spheres and by the S sphere radius, R.  
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3. Results 

In Tables III-VIII we present our results – the specific bipyramids, the value of R at which they 

are compact and the fraction of S spheres, Fs. Nearly all of the equatorial sequences in Table I 

give compact packings for at least one of the three axial pairs. Those that do not are listed in 

italics. Compact bipyramids exist only for SS or SL axis pairs when n ≤ 5 (Tables III-V), and 

only for the LL axis pair when n ≥ 6 (Tables VI-VIII).  

 

The R values for which compact bipyramids are obtained are plotted in Figure 2 for each n value 

studied. Compact bipyramids with R > 2/3 exist only for pentagonal bipyramids. There are no 

compact packings above R = 0.9473. This maximum value is achieved by the pentagonal 

bipyramid consisting of 5 L equatorial spheres with an SS axis. For this pentagonal bipyramid, R 

decreases to as low as 0.7434 and Fs increases as S spheres are added to the equatorial ring 

(Figure 3). The same trend is repeated for pentagonal bipyramids with the SL axis pair, starting 

at R = 0.9022 for the bipyramid with 5 L equatorial spheres, and continuing to a lower bound of 

R = 0.2236 for 2 L and 3 S equatorial spheres. The pentagonal bipyramids cover the largest range 

of R for any of the compact n-bipyramids studied.  

 

Compact bipyramids with R ≤ 2/3 are dominated by n = 6, 7, 8. These bipyramids cover a nearly 

continuous span of R from 0.6667 to 0.1553, the lowest R obtained in this study. Far fewer 

compact bipyramids are found with n = 3 or 4, which sparsely cover the range 

0.5000 ≥ R ≥ 0.1667. As shown in Figure 3, a decrease in R is achieved by an increase in Fs 

when n ≤ 5, and is accomplished by a decrease in Fs when n ≥ 6.  
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The gaps are real. In addition to the upper limit of R = 0.9473, no compact packings are 

produced over the range 0.8493 ≥ R ≥ 0.7434. The abrupt absence of compact packings below 

R ≤ 0.1553 arises from a fundamental instability in tetrahedra with 3L and 1S spheres. The S 

sphere just fills the interstice between the 3L spheres when ( ) ...1547.0132 =−=R , forming a 

planar trigonal array rather than a tetrahedron. This instability affects bipyramids with the SL 

axis pair when k≠0 and the LL axis pair when j≠0, eliminating over half the SL bipyramids and 

almost all the LL bipyramids for ( ) 132 −<R . When ( ) 132 −<R , bipyramid packings 

approach the compact state as R → 0 for the SS axis pair with the SLL and SLSL equatorial 

sequences and for the SL axis pair with the SLSL and SSSSL equatorial sequences. 

 

These bipyramids can be used to construct clusters. In the simplest way, two identical 

bipyramids are combined by sharing a common axis sphere which then forms the central sphere 

of the cluster. In this way, two bipyramids with the SL/LLLLL axis pair/equatorial spheres 

configuration that share the common S sphere are used to form an icosahedron with a central S 

surrounded by 12L. Clusters produced in this way need not be efficiently packed, as illustrated 

by combining the same two SL/LLLLL bipyramids into a cluster that shares the common L of 

the axis pair. Non-identical bipyramids can also be combined, but packing frustration from such 

combinations is likely to be common.  

 

The SS/SSLL and SL/SSLL bipyramids are both compact at R = 0.1716. Each of these two 

distinct bipyramids is a portion of a cluster comprised of an inner tetrahedron of 4S enclosed by 
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a tetrahedron of 4L. Each L nestles in the centre of each of the 4 faces formed by the smaller 

tetrahedron, and the 4L spheres just contact each other.  

 

A single plane passes through all n equatorial sphere centres for bipyramids with the SS and LL 

axis pairs, and this plane bisects the line defined by the SS and LL axis pair centres. For the SL 

axis pair, the equatorial plane is normal to the axis only when all of the equatorial spheres are of 

the same type. However, this plane no longer bisects the axis, and if S is sufficiently small, it 

need not intersect the SL axis at all. In general, a single plane does not pass through all n 

equatorial centres in bipyramids with an SL axis pair and mixed equatorial spheres.  

 

4. Discussion 

In 1987 Honeycutt and Andersen [10] reported on the common neighbour distribution in a 

supercooled binary mixture of Lennard-Jones particles with a size ratio of 0.8. They observed 

that the number of contact pairs with five common neighbours (i.e. 1551 or pentagonal 

bipyramids) increased significantly on cooling. At the lowest temperature reported, 61% of the 

particles were involved in either a 1551 or a 2331 common neighbour pair (the two common 

neighbour environments found in an icosahedron). The significance of the pentagonal 

bipyramids lends support to our proposition that the close packing of bipyramids represent useful 

description of the close packing in extended amorphous phase.  

 

Honeycutt and Andersen went on to identify the pentagonal bipyramids as icosahedral 

environments. Was this justified? Consider, for example, the bipyramid with S particles in both 

axial positions and the equatorial sequence SSLSL. This bipyramid is close-packed when 
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R = 0.8678. Decorating part of the icosahedral net with this bipyramid we see that each large 

particle sits on an axial position of a new bipyramid with a small particle in the other axial 

position and an equatorial sequence SSSxx. The last two equatorial positions are unspecified but, 

looking through the list of possible close packed pentagonal bipyramids, we see that the only 

bipyramid that meets these conditions is one with the equatorial sequence SSSLL. This new 

bipyramid is close-packed when R2 = 0.4202, a size ratio significantly smaller than that of the 

original bipyramid so we can conclude that the bipyramid SS/SSLSL cannot be involved in a 

close-packed polyhedra on an icosahedral net. Based on similar reasoning we conclude that out 

of the 13 close-packed pentagonal bipyramids, only three: SS/LLLLL, SL/SLLLL and 

SL/LLLLL, could provide the basis for dense packing of a polyhedron with icosahedral 

topology, and only the last can actually produce a close packed icosahedron. 

 

The preceding argument demonstrates that the presence of pentagonal bipyramids in an 

amorphous packing does not imply the presence of icosahedra. This is, of course, not the same as 

proving that icosahedra are absent in such an amorphous state, just that, if present, they include 

elements other than the compact bipyramids treated here. The Laves crystal MgZn2, for example, 

represents a reasonable AB2 packing (with a packing fraction close to that of fcc) and contains 

icosahedral coordination polyhedra about the smaller (B) particle in spite of the inability of the 

pentagonal bipyramids to form such a polyhedron at this size ratio. In fact, the same model 

studied by Honeycutt and Andersen has recently [22] been shown to freeze into the MgZn2 

structure and, in fact, to have a substantial amount of icosahedral coordination in the supercooled 

liquid. These icosahedra, far from stabilizing the liquid from freezing as envisioned by Frank, are 

actually the precursors of the crystal phase. 
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We propose here that compact bipyramids are structural elements that may be important in 

maximising the packing efficiency in disordered systems of binary spheres− a problem of 

significant relevance. Decreasing packing efficiency within a given bipyramid is expected for 

increasing deviation from discrete values of R that give compact bipyramids. Although the 

number of compact bipyramids is rather small, giving a small set of discrete R values, these 

values are nevertheless fairly evenly distributed over the bounding interval of 

0.1547 § R § 0.9473 (Figure 2). Thus, bipyramids can generally be produced for any R value 

that is not far from one that gives compact packing. The gap over the interval 

0.7434 § R § 0.8493 is notable, in that it is significantly larger than any other interval that 

excludes compact bipyramids. This gap represents a range in R over which bipyramids cannot be 

nearly efficiently packed, and this may have relevance in the efficient packing in disordered 

systems of binary spheres.  

 

5. Conclusions 

Insight into the efficient filling of space in systems of unequal spheres is explored using 

bipyramids constructed of 3 to 8 tetrahedra that share a common pair of spheres. Two sphere 

sizes are used− a larger sphere L with a fixed radius of unity and a smaller sphere S with radius 

0.001 ≤ R ≤ 1. Seventy-seven distinct compact bipyramids are identified. Two distinct compact 

bipyramids are found for n = 3, 6 for n = 4, 13 for n = 5, 12 for n = 6, 17 for n = 7 and 27 for 

n = 8. The largest R that produces compact packing is 0.9473. No compact bipyramids are found 

over the interval 0.8493 ≥ R ≥ 0.7434. A topological instability eliminates compact packings for 
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R ≤ 0.1547. Compact pentagonal bipyramids are found over a larger range in R than any other 

bipyramids studied.  
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FIGURE CAPTIONS 
 

Figure 1. The dihedral AOBC of a bipyramid cluster  

 

Figure 2. Size ratios for which compact packings exist for various bipyramids. Bipyramids are 

identified by both the number of particles in the equatorial positions and the type of particles in 

the two axial sites: SS ( ), SL ( ) and LL ( ). The size ratios for all compact bipyramids 

described here are shown at the bottom of the figure ( ).  

 

Figure 3. The fraction of small spheres Fs as a function of R for the type of particles in the two 

axial sites: SS ( ), SL ( ) and LL ( ).  
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n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 
SSS 3,0,0 SSSS 4,0,0 SSSSS 5,0,0 SSSSSS 6,0,0 SSSSSSS 7,0,0 SSSSSSSS 8,0,0 

SSL 1,2,0 SSSL 2,2,0 SSSSL 3,2,0 SSSSSL 4,2,0 SSSSSSL 5,2,0 SSSSSSSL 6,2,0 

SLL 0,2,1 SSLL 1,2,1 SSSLL 2,2,1 SSSSLL 3,2,1 SSSSSLL 4,2,1 SSSSSSLL 5,2,1 

LLL 0,0,3 SLSL 0,4,0 SSLSL 1,4,0 SSSLSL 2,4,0 SSSSLSL 3,4,0 SSSSSLSL 4,4,0 

  SLLL 0,2,2 SSLLL 1,2,2 SSLSSL 2,4,0 SSSLSSL 3,4,0 SSSSLSSL 4,4,0 

  LLLL 0,0,4 SLSLL 0,4,1 SSSLLL 2,2,2 SSSSLLL 3,2,2 SSSLSSSL 4,4,0 

    SLLLL 0,2,3 SSLSLL 1,4,1 SSSLSLL 2,4,1 SSSSSLLL 4,2,2 

    LLLLL 0,0,5 SLSLSL 0,6,0 SSLSSLL 2,4,1 SSSSLSLL 3,4,1 

      SSLLLL 1,2,3 SSLSLSL 1,6,0 SSSLSSLL 3,4,1 

      SLSLLL 0,4,2 SSSLLLL 2,2,3 SSSLSLSL 2,6,0 

      SLLSLL 0,4,2 SSLSLLL 1,4,2 SSLSSLSL 2,6,0 

      SLLLLL 0,2,4 SSLLSLL 1,4,2 SSSSLLLL 3,2,3 

      LLLLLL 0,0,6 SLSLSLL 0,6,1 SSSLSLLL 2,4,2 

        SSLLLLL 1,2,4 SSLSSLLL 2,4,2 

        SLSLLLL 0,4,3 SSSLLSLL 2,4,2 

        SLLSLLL 0,4,3 SSLLSSLL 2,4,2 

        SLLLLLL 0,2,5 SSLSLSLL 1,6,1 

        LLLLLLL 0,0,7 SSLSLLSL 1,6,1 

          SLSLSLSL 0,8,0 

          SSSLLLLL 2,2,4 

          SSLSLLLL 1,4,3 

          SSLLSLLL 1,4,3 

          SLSLSLLL 0,6,2 

          SLSLLSLL 0,6,2 

          SSLLLLLL 1,2,5 

          SLSLLLLL 0,4,4 

          SLLSLLLL 0,4,4 

          SLLLSLLL 0,4,4 

          SLLLLLLL 0,2,6 

          LLLLLLLL 0,0,8 

Table I. Equatorial sphere sequences and corresponding i,j,k values in bipyramids 
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n Number of distinct 

bipyramids 
Number of distinct 

i, j, k packings 
Number of compact 

bipyramids in 
0.001 ≤ R ≤1 

3 12 12 2 

4 18 18 6 

5 24 24 13 

6 39 33 12 

7 54 42 17 

8 90 54 27 
Table II. Number of distinct bipyramids, distinct packings and compact bipyramids 

 
 
 
 

Axial spheres Equatorial sphere 
sequence 

i, j, k Fs R 

SS LLL 0, 0, 3 0.4 0.1667 
SL LLL 0, 0, 3 0.2 0.2247 

Table III. Compact trigonal bipyramids (n = 3) 
 
 
 
 
 

Axial spheres Equatorial sphere 
sequence 

i, j, k Fs R 

SS SSLL 1, 2, 1 0.667 0.1716 
SS SLLL 0, 2, 2 0.5 0.3625 
SS LLLL 0, 0, 4 0.333 0.5000 
SL SSLL 1, 2, 1 0.5 0.1716 
SL SLLL 0, 2, 2 0.333 0.2808 
SL LLLL 0, 0, 4 0.167 0.4142 

Table IV. Compact quadrilateral bipyramids (n = 4) 
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Axial spheres Equatorial sphere 
sequence 

i, j, k Fs R 

SS SSSSL 3, 2, 0 0.857 0.7434 
SS SSSLL 2, 2, 1 0.714 0.8710 
SS SSLSL 1, 4, 0 0.714 0.8678 
SS SSLLL 1, 2, 2 0.571 0.9129 
SS SLSLL 0, 4, 1 0.571 0.9119 
SS SLLLL 0, 2, 3 0.429 0.9342 
SS LLLLL 0, 0, 5 0.286 0.9473 
SL SSSLL 2, 2, 1 0.571 0.4202 
SL SSLSL 1, 4, 0 0.571 0.2236 
SL SSLLL 1, 2, 2 0.429 0.7206 
SL SLSLL 0, 4, 1 0.429 0.6902 
SL SLLLL 0, 2, 3 0.286 0.8493 
SL LLLLL 0, 0, 5 0.143 0.9022 

Table V. Compact pentagonal bipyramids (n = 5) 
 
 
 
 
 

Axial spheres Equatorial sphere 
sequence 

i, j, k Fs R 

LL SSSSSS 6, 0, 0 0.75 0.6667 
LL SSSSSL 4, 2, 0 0.625 0.6247 
LL SSSSLL 3, 2, 1 0.5 0.5591 
LL SSSLSL 2, 4, 0 0.5 0.5774 
LL SSLSSL 2, 4, 0 0.5 0.5774 
LL SSSLLL 2, 2, 2 0.375 0.4716 
LL SSLSLL 1, 4, 1 0.375 0.5034 
LL SLSLSL 0, 6, 0 0.375 0.5275 
LL SSLLLL 1, 2, 3 0.25 0.3600 
LL SLSLLL 0, 4, 2 0.25 0.4142 
LL SLLSLL 0, 4, 2 0.25 0.4142 
LL SLLLLL 0, 2, 4 0.125 0.2454 

Table VI. Compact hexagonal bipyramids (n = 6) 
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Axial spheres Equatorial sphere 

sequence 
i, j, k Fs R 

LL SSSSSSS 7, 0, 0 0.778 0.4638 
LL SSSSSSL 5, 2, 0 0.667 0.4300 
LL SSSSSLL 4, 2, 1 0.556 0.3684 
LL SSSSLSL 3, 4, 0 0.556 0.3996 
LL SSSLSSL 3, 4, 0 0.556 0.3996 
LL SSSSLLL 3, 2, 2 0.444 0.2999 
LL SSSLSLL 2, 4, 1 0.444 0.3427 
LL SSLSSLL 2, 4, 1 0.444 0.3427 
LL SSLSLSL 1, 6, 0 0.444 0.3739 
LL SSSLLLL 2, 2, 3 0.333 0.2318 
LL SSLSLLL 1, 4, 2 0.333 0.2856 
LL SSLLSLL 1, 4, 2 0.333 0.2856 
LL SLSLSLL 0, 6, 1 0.333 0.3235 
LL SSLLLLL 1, 2, 4 0.222 0.1787 
LL SLSLLLL 0, 4, 3 0.222 0.2345 
LL SLLSLLL 0, 4, 3 0.222 0.2345 
LL SLLLLLL 0, 2, 5 0.111 0.1553 

Table VII. Compact heptagonal bipyramids (n = 7) 
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Axial spheres Equatorial sphere 

sequence 
i, j, k Fs R 

LL SSSSSSSS 8, 0, 0 0.8 0.3431 
LL SSSSSSSL 6, 2, 0 0.7 0.3246 
LL SSSSSSLL 5, 2, 1 0.6 0.2746 
LL SSSSSLSL 4, 4, 0 0.6 0.3103 
LL SSSSLSSL 4, 4, 0 0.6 0.3103 
LL SSSLSSSL 4, 4, 0 0.6 0.3103 
LL SSSSSLLL 4, 2, 2 0.5 0.2250 
LL SSSSLSLL 3, 4, 1 0.5 0.2679 
LL SSSLSSLL 3, 4, 1 0.5 0.2679 
LL SSSLSLSL 2, 6, 0 0.5 0.2993 
LL SSLSSLSL 2, 6, 0 0.5 0.2993 
LL SSSSLLLL 3, 2, 3 0.4 0.1824 
LL SSSLSLLL 2, 4, 2 0.4 0.2288 
LL SSSLLSLL 2, 4, 2 0.4 0.2288 
LL SSLSSLLL 2, 4, 2 0.4 0.2288 
LL SSLLSSLL 2, 4, 2 0.4 0.2288 
LL SSLSLSLL 1, 6, 1 0.4 0.2633 
LL SSLSLLSL 1, 6, 1 0.4 0.2633 
LL SLSLSLSL 0,8,0 0.4 0.2910 
LL SSSLLLLL 2, 2, 4 0.3 0.1573 
LL SSLSLLLL 1, 4, 3 0.3 0.1962 
LL SSLLSLLL 1, 4, 3 0.3 0.1962 
LL SLSLSLLL 0, 6, 2 0.3 0.3235 
LL SLSLLSLL 0, 6, 2 0.3 0.3235 
LL SLSLLLLL 0, 4, 4 0.2 0.1726 
LL SLLSLLLL 0, 4, 4 0.2 0.1726 
LL SLLLSLLL 0, 4, 4 0.2 0.1726 

Table VIII. Compact octagonal bipyramids (n = 8) 
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Figure 1. The dihedral AOBC of a bipyramid cluster  
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Figure 2. Size ratios for which compact packings exist for various bipyramids. Bipyramids are 
identified by both the number of particles in the equatorial positions and the type of particles in 
the two axial sites: SS ( ), SL ( ) and LL ( ). The size ratios for all compact bipyramids 
described here are shown at the bottom of the figure ( ).  
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Figure 3. The fraction of small spheres Fs as a function of R for the type of particles in the two 
axial sites: SS ( ), SL ( ) and LL ( ).  
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